Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
J Vector Ecol ; 49(1): 53-63, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147301

RESUMO

Aedes aegypti is the species of greatest concern for mosquito-borne disease in the Florida Keys. Previous locally transmitted dengue outbreaks in Key West (2009-2010) and Key Largo (2020) illustrate the need for an immediate and effective response plan to maintain Ae. aegypti populations below threshold levels. An important part of the Florida Keys Mosquito Control District's vector response plan is adulticide application because it can provide an immediate reduction in Ae. aegypti adults in the community. It has become apparent that in the Florida Keys, and throughout Florida, Ae. aegypti resistance to the adulticide permethrin is prevalent. This study uses the CDC bottle bioassay method to look at resistance in Ae. aegypti collected from Key Largo, Vaca Key, and Key West, FL. Resistance was found in all three populations when exposed to permethrin and Sumithrin® but not malathion. Inhibitor testing revealed that esterase and glutathione transferase activity is involved in resistance to permethrin in Key Largo and Key West Ae. aegypti populations while oxidase activity is involved in resistance to permethrin in Ae. aegypti from Vaca Key. Lack of knockdown at the diagnostic time and previous studies detecting the presence of kdr-associated allele mutations suggest knockdown resistance in all three populations. Results from this study show that there are multiple factors involved with resistance in the Ae. aegypti populations in the Florida Keys and that resistance mechanisms vary between islands. Continued surveillance will remain important so the most effective active ingredients can be used in response to future disease transmission.


Assuntos
Aedes , Resistência a Inseticidas , Permetrina , Animais , Aedes/efeitos dos fármacos , Bioensaio , Surtos de Doenças , Florida , Permetrina/farmacologia
2.
Braz. j. biol ; 83: 1-5, 2023. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468828

RESUMO

Numerous studies have investigated the chemical composition and biological activities of essential oils from different Citrus species fruit peel, leaves and flowers. This paper aims to investigate the chemical composition, larvicidal and antileishmanial activities of essential oil from Citrus reticulata fruit peel (CR-EO). CR-EO was obtained by hydrodistillation in a Clevenger-type apparatus and its chemical composition was analyzed by GC-MS and GC-FID. Limonene (85.7%), ɣ-terpinene (6.7%) and myrcene (2.1%) were identified as its major components. CR-EO showed high activity against promastigote forms of Leishmania amazonensis (IC50 = 8.23 µg/mL). CR-EO also exhibited high larvicidal activity against third instar Aedes aegypti larvae at a lethal concentration (LC50 = 58.35 µg/mL) and 100% mortality at 150 µg/mL. This study suggests, for the first time, the potential use of CR-EO against this important mosquito-borne viral disease caused by the genus Aedes.


Numerosos estudos têm investigado a composição química e as atividades biológicas de óleos essenciais extraídos de cascas dos frutos, folhas e flores de diferentes espécies de Citrus. Este trabalho tem como objetivo investigar a composição química e as atividades larvicida e leishmanicida in vitro do óleo essencial das cascas dos frutos de Citrus reticulata (CR-EO). CR-EO foi obtido pela técnica de extração em aparelho Clevenger e sua composição química foi determinada por CG-EM e CG-DIC. Limoneno (85,7%), ɣ-terpineno (6,7%) and mirceno (2,1%) foram identificados como os constituintes majoritários. CR-EO mostrou alta atividade contra as formas promastigota de Leishmania amazonensis (CI50 = 8,23 µg/mL). CR-EO também exibiu alta atividade larvicida contra as larvas do terceiro estágio do Aedes aegypti com concentração letal (CL50 = 58,35 µg/mL) e mortalidade de 100% em 150 µg/mL. Este estudo sugere, pela primeira vez, o uso potencial de CR-EO contra esta importante doença viral transmitida por mosquitos do gênero Aedes.


Assuntos
Aedes/efeitos dos fármacos , Citrus/química , Leishmania/efeitos dos fármacos , Limoneno/análise , Técnicas In Vitro , Óleos Voláteis/química
3.
J. Health Biol. Sci. (Online) ; 10(1): 1-15, 01/jan./2022. tab, ilus
Artigo em Português | LILACS | ID: biblio-1411686

RESUMO

Objetivos: Realizar um levantamento das contribuições científicas produzidas entre 2017 e 2021 acerca do efeito larvicida de óleos essenciais e extratos vegetais no controle de Aedes spp, Anopheles spp e Culex spp. Métodos: de setembro a outubro de 2022, foi realizado um levantamento de artigos científicos publicados entre os anos de 2017 e 2021, nas bases de dados Portal Periódicos Capes, Scielo, Science Direct e Scopus. Foram utilizados os descritores "larvicide", "essential oil" e "plant extracts" com a interposição do operador boleano "AND". Resultados: inicialmente, foram obtidos 246 artigos, dos quais 110 foram excluídos (68 não estavam disponíveis na íntegra e 42 apareceram em mais de uma base de dados). Dos 136 artigos restantes, 36 foram excluídos por não terem realizado ensaio larvicida. Dos 100 artigos remanescentes, 63 foram excluídos por não mencionarem valores de CL50, enquanto 3 não especificaram a estrutura vegetal de obtenção dos produtos naturais, restando, portanto, 34 artigos para análise. Foram utilizadas 57 espécies vegetais para a obtenção dos produtos vegetais utilizados contra larvas de Aedes spp; 11 espécies nos ensaios contra Anopheles spp, e 36 espécies nos ensaios contra Culex spp. Os óleos essenciais predominaram nos ensaios contra Aedes spp, enquanto os extratos, contra Anopheles spp. A maior parte dos produtos testados exibiu CL50 < 100 ppm. Conclusão: a atividade larvicida demonstrada por uma grande variedade de extratos vegetais e óleos essenciais representa uma alternativa promissora ao tradicional controle químico feito à base de inseticidas sintéticos em programas de manejo integrado de vetores.


Objectives: Conduct a survey of the scientific contributions produced between 2017 and 2021 on the larvicidal effect of essential oils and plant extracts in the control of Aedes spp, Anopheles spp, and Culex spp. Methods: from September to October 2022, a survey was carried out of scientific articles published between 2017 and 2021 in the Portal Periódicos Capes, Scielo, Science Direct, and Scopus databases. The descriptors "larvicide", "essential oil" and "plant extracts" were used with the Boolean operator "AND". Results: initially, 246 articles were obtained, of which 110 were excluded (68 were not available, and 42 appeared in more than one database). Of the remaining 136 articles, 36 were excluded because they did not perform a larvicide assay. Of the 100 remaining articles, 63 were excluded for not mentioning LC50 values, while three did not specify the plant structure for obtaining natural products, thus leaving 34 articles for analysis. A total of 57 plant species were used to obtain plant products used against Aedes spp larvae; 11 species in the tests against Anopheles spp, and 36 species in the tests against Culex spp. Essential oils predominated in the tests against Aedes spp, while extracts against Anopheles spp. Most of the products tested exhibited an LC50 < 100 ppm. Conclusion: the larvicidal activity demonstrated by a wide variety of plant extracts and essential oils represents a promising alternative to traditional chemical control based on synthetic insecticides in integrated vector management programs.


Assuntos
Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Aedes/efeitos dos fármacos , Culex/efeitos dos fármacos , Larva/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Larvicidas , Agentes de Controle Biológico/farmacologia
4.
Pestic Biochem Physiol ; 186: 105171, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973763

RESUMO

We explored the potential of two sodium channel activators, veratrine and aconitine, as both insecticides and synergists of natural pyrethrins (NP) on Aedes aegypti adults and larvae. Aconitine was more toxic than veratrine, with an LD50 of 157 ng/mg compared to 376 ng/mg, on the pyrethroid-susceptible Orlando strain, but only aconitine showed significant resistance in the pyrethroid-resistant Puerto Rico strain (RR = 14.6 in topical application and 8.8 in larval bioassay). When applied in mixtures with piperonyl butoxide (PBO) and NP, large synergism values were obtained on the Orlando strain. Aconitine + PBO mixture synergized NP 21.8-fold via topical adult application and 10.2-fold in larval bioassays, whereas veratrine + PBO synergized NP 5.3-fold via topical application and 30.5-fold in larval bioassays. Less synergism of NP was observed on the resistant Puerto Rico strain, with acontine + PBO synergizing NP only 4.1-fold in topical application (8-fold in larval bioassays) and veratrine + PBO synergizing NP 9.5-fold in topical application (13.3-fold in larval bioassays). When alkaloids were applied directly to the mosquito larval nervous system, veratrine was nearly equipotent on both strains, while aconitine was less active on pyrethroid-resistant nerve preparations (no block at 10 µM compared to block at 1 µM on the susceptible strain). The nerve blocking effect of NP was significantly synergized by both compounds on the pyrethroid-susceptible strain by about 10-fold, however only veratrine synergized NP block on the pyrethroid-resistant strain, also showing 10-fold synergism). These results highlight the potential of site II sodium channel activators as insecticides and their ability to synergize pyrethroids, which may extend the commercial lifetime of these chemistries so essential to public health vector control.


Assuntos
Inseticidas , Piretrinas , Agonistas de Canais de Sódio , Aconitina/farmacologia , Aedes/efeitos dos fármacos , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Agonistas de Canais de Sódio/farmacologia , Veratrina/farmacologia
5.
IET Nanobiotechnol ; 16(4): 145-157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35353449

RESUMO

Marine seaweeds are known to have a potential role against microbial and pesticidal activities. Ulva lactuca, a green macroalgae extract analysed through gas chromatography mass spectrometry reveals 31 compounds. Resistance of mosquito vectors to synthetic insecticides remains a major problem. Discovering and applying natural agents to act against disease vectors is challenging. The activities of the extract and nano-fabricated green synthesised silver nanoparticles were checked for use against Aedes aegypti and Culex pipiens. The crude extract and synthesised silver nanoparticles exhibited a notable larvicidal effect, and very effective inhibition of pupal and adult emergence. Inhibition of adult emergence of Ae.aegypti was 97.7% and in Cu.pipiens, it was 93.3%. Our genotypic study of Deoxyribonucleic acid from treated larvae utilising random primers MA-09, MA-12 and MA-26 revealed damaged nucleotide sequences when compared with the controls. The antimicrobial activity of both the extract and green synthesised nanomaterials showed prominent activity against pathogenic drug resistant bacteria. Our results contribute to further development of eco-friendly insecticides with lower cost of preparation. This could further contribute to further research helping future generations to be free from these deadly disease-causing vectors and pathogenic microbes.


Assuntos
Aedes , Inseticidas , Nanopartículas Metálicas , Prata , Ulva , Aedes/efeitos dos fármacos , Aedes/genética , Animais , DNA/análise , Genômica , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Nanopartículas Metálicas/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Ulva/química
6.
Bol. latinoam. Caribe plantas med. aromát ; 21(2): 207-214, mar. 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1395229

RESUMO

In this study, we investigated the main constituent, the predominant class and biological activity of the essential oil extracted from the leaves of Pimenta dioica and the pattern of the major constituent against larvae in the third stage of Aedes aegypti. For this reason, we extracted the oil by hydrodistillation, identified its components by gas chromatography coupled with mass spectrometry (GC/MS) and calculated the lethal concentration (LC50) of the larvicidal activity using the Reed-Muench method. The results show that the oil consists mainly of eugenol, in which the phenylpropanoid class predominated and the lethal concentration, LC50, was 38.86 µg mL-1at a confidence level of 2.25 µg mL-1, while the eugenol standard presented LC5079.75 µg mL-1at a confidence level of 2.10 µg mL-1. Given the facts, we conclude that the oil is more active than the standard and that it has the potential to replace chemical larvicides.


En este estudio, investigamos el constituyente principal, la clase predominante y la actividad biológica del aceite esencial extraído de las hojas de Pimenta dioica y el patrón del constituyente principal contra las larvas en la tercera etapa de Aedes aegypti. Por este motivo, extrajimos el aceite por hidrodestilación, identificamos sus componentes mediante cromatografía de gases acoplada a espectrometría de masas (GC/MS) y calculamos la concentración letal (CL50) de la actividad larvicida mediante el método Reed-Muench. Los resultados muestran que el aceite está constituido principalmente por eugenol, en el que predominó la clase fenilpropanoide y la concentración letal, CL50, fue de 38,86 µg.mL-1 a un nivel de confianza de 2,25 µg.mL-1, mientras que el estándar de eugenol presentó CL50 79,75 µg.mL -1 a un nivel de confianza de 2,10 µg.mL-1. Dados los hechos, concluimos que el aceite es más activo que el estándar y que tiene el potencial de reemplazar los larvicidas químicos.


Assuntos
Óleos Voláteis/farmacologia , Óleos Voláteis/química , Aedes/efeitos dos fármacos , Pimenta/química , Larvicidas , Bioensaio , Produtos Biológicos , Eugenol/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta , Monoterpenos/análise , Larva , Cromatografia Gasosa-Espectrometria de Massas
7.
Sci Rep ; 12(1): 2066, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136077

RESUMO

In this study, we utilized an untargeted NMR metabolomics approach to identify the vector response in terms of metabolic profiling after temperature and insecticide exposure in comparison with the control. Clearly, temperature and insecticide exposure cause changes in the underlying metabolism, and the NMR metabolomic profile enables a direct examination of the immediate response of the vector to cope up with these changes. The present study was designed in four parts: A-Aedes aegypti were exposed to 40 °C for one-hour, DDT-4%, malathion-5%, and deltamethrin-0.05% separately and, part B-D; one-hour exposure at 35 °C and 40 °C temperatures followed by one-hour exposure to insecticide. The resultant metabolite profiles were compared with the control. In response to temperature and insecticide exposure, several metabolites and altered pathways were identified. Citrate, maltose, lipids, Nicotinate, Choline, Pyruvate and ß-hydroxybutyrate were found as important components of major biological pathways such as tri-carboxylic acid cycle, branched amino acid degradation, glycolysis/gluconeogenesis, amino acid metabolism, lipid and carbohydrate metabolism, nucleotide PRPP pathway, and phospholipid metabolism. Furthermore, the results also suggest that the changes imposed by exposure to temperature and insecticides individually, are reversed with combined exposure, thus negating the impact of each other and posing a threat to the control of Aedes-borne diseases such as dengue, chikungunya, Zika and yellow fever.


Assuntos
Aedes/metabolismo , Inseticidas/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Doenças Transmitidas por Vetores/transmissão , Aedes/efeitos dos fármacos , Animais , DDT/farmacologia , Resistência a Inseticidas/fisiologia , Malation/farmacologia , Metabolômica/métodos , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Temperatura
8.
PLoS Negl Trop Dis ; 16(2): e0010206, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139066

RESUMO

The tiger mosquito was introduced to the Eastern region of the Mediterranean basin more than twenty years ago. In Lebanon, it was first observed in 2002 in a limited number of locations mainly from the coastal area of the country. In the absence of national entomological control program, this invasive mosquito became an established species and is now considered in many localities, a source of nuisance because of its human biting behavior. Several entomological surveys were conducted to monitor the geographic spread and the seasonal dynamics of Aedes albopictus by collecting adult stages and by monitoring oviposition activity. Moreover, its susceptibility to the common groups of insecticides was assessed using WHO standard bioassays. Previous vector competence studies revealed that local strains were able to transmit Chikungunya and Dengue viruses. Due to the increased risk of Zika virus introduction in the country, we determined the competence of local populations to transmit this virus. Mapping results showed that Ae. albopictus is mainly spread in the relatively humid western versant of the Mount Lebanon chain reaching 1000m altitude, while it is absent from arid and semi-arid inland areas. Besides, this mosquito is active during 32 weeks from spring till the end of autumn. Local strains of the tiger mosquito are susceptible to pyrethroids and carbamates but resistant to organophosphates and organochlorines. They showed ability to transmit Zika virus; however, only 9% of females were capable to excrete the virus in their saliva at day 28 post infection. Current and previous observations highlight the need to establish a surveillance system in order to control this mosquito and monitor the potential introduction of related diseases.


Assuntos
Aedes/fisiologia , Espécies Introduzidas/estatística & dados numéricos , Mosquitos Vetores/fisiologia , Aedes/efeitos dos fármacos , Aedes/virologia , Distribuição Animal , Animais , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Inseticidas/farmacologia , Líbano , Masculino , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Piretrinas/farmacologia , Saliva/virologia , Estações do Ano , Zika virus/genética , Zika virus/isolamento & purificação
9.
Sci Rep ; 12(1): 2206, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177630

RESUMO

Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.


Assuntos
Anopheles/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Aedes/efeitos dos fármacos , Aedes/patogenicidade , Animais , Anopheles/fisiologia , Bioensaio , Culex/efeitos dos fármacos , Culex/patogenicidade , Culicidae/efeitos dos fármacos , Culicidae/patogenicidade , Humanos , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Organização Mundial da Saúde
10.
Toxins (Basel) ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202174

RESUMO

Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop ß6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Aedes/virologia , Toxinas de Bacillus thuringiensis/toxicidade , Agentes de Controle Biológico , Densovirus/patogenicidade , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Animais , China , Densovirus/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Virulência/efeitos dos fármacos
11.
Sci Rep ; 12(1): 2277, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145175

RESUMO

Botanical insecticides are preferred for their environment and user-friendly nature. Eugenol is a plant-based monoterpene having multifarious biocidal activities. To understand whether eugenol would persistently work against Aedes aegypti, we performed larvicidal bioassays on thirty successive generations and determined median lethal concentration (LC50) on each generation. Results showed no apparent differences between LC50 at F0 (63.48 ppm) and F30 (64.50 ppm) indicating no alteration of susceptibility toward eugenol. To analyze, if eugenol has any effect on metabolic detoxification-associated enzymes, we measured esterases (alpha and beta), cytochrome P450, and GST activities from the survived larvae exposed to LC50 concentration from F0-F30. Results revealed a decrease of esterases, GST, and cytochrome P450 activities at the initial 4-8 generations and then a gradual increase as the generations progressed. GST activity remained significantly below the control groups. Synergists (TPP, DEM, and PBO) were applied along with eugenol at F30 and LC50 concentration, and the said enzyme activities were recorded. Results showed a noticeable decrease in LC50 and enzyme activities indicating effective inhibitions of the respective enzymes. Overall, present results inferred that eugenol would effectively work as a larvicide for a longer period in successive generations without initiating rapid resistance and therefore could be advocated for controlling A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Eugenol/farmacologia , Inseticidas , Larva/efeitos dos fármacos , Aedes/embriologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Esterases/metabolismo , Glutationa Transferase/metabolismo , Larva/enzimologia , Dose Letal Mediana
12.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209137

RESUMO

Vector-borne diseases, such as those transmitted by Aedes aegypti, are a constant threat to inhabitants of tropical regions of the planet. Synthetic chemicals are commonly used as a strategy to control them; however, these products are known to persist in ecosystems and drive the appearance of resistance genes in arthropod vectors. Thus, the use of natural products has emerged as an environmentally friendly alternative in integrated vector control strategies. The present bioguided study investigated the larvicidal potential of Ipomoea cairica extracts, fractionated using thin-layer and open-column chromatography, because this species has been shown to exert larvicidal effects on the genus Aedes. The objective of this study was to evaluate the nonvolatile components in ethanolic extract of I. cairica stems as a potential natural larvicidal, and coumarins, such as 7-hydroxy-6-methoxychromen-2-one (scopoletin) and 7-hydroxychromen-2-one (umbelliferone), were identified as major compounds; however, they were not shown to be responsible for the larvicidal activity. Based on the results of the larvicidal action tests, these coumarins are not directly responsible for the larvicidal activity, but this activity might be attributed to a synergistic effect of all the compounds present in the most active secondary fraction, called F.DCM, which had an LC50 value of 30.608 mg/L. This type of study has yet not been conducted in the region; therefore, it is an important contribution to recognizing a natural and easy-to-cultivate source of vector control, such I. cairica.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Ipomoea/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Delgada , Relação Dose-Resposta a Droga , Inseticidas/química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Espectrometria de Massas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
13.
J Med Entomol ; 59(1): 192-212, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34718656

RESUMO

Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.


Assuntos
Aedes , Resistência a Inseticidas/genética , Temefós/farmacologia , Aedes/efeitos dos fármacos , Aedes/genética , Animais , Infecções por Arbovirus/transmissão , Vetores de Doenças , Genes de Insetos , Variação Genética , Controle de Insetos , Larva , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , RNA-Seq
14.
J Med Entomol ; 59(1): 384-389, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748002

RESUMO

Commercially available 'smart' trap technology has not yet been widely used to evaluate interventions against mosquitoes despite potential benefits. These benefits include the ability to capture data continuously at fine temporal scales without the human resources usually required for conventional trap deployment. Here, we used a commercially available smart trap (BG-Counter, Biogents) to assess the efficacy of an insecticide barrier treatment (BiFlex AquaMax) in reducing mosquito nuisance in a logistically challenging coastal environment in Queensland, Australia. Adoption of smart trap technology permitted us to conduct a uniquely detailed assessment of barrier treatments, ultimately allowing us to demonstrate significant reductions in mosquito collections from treated properties over all temporal scales. On average, daily mosquito collections from treated properties were reduced by 74.6% for the duration of the post-treatment period (56 d). This observation was supported by similar reductions (73.3%) in mosquito collections across all hours of the day. It was further found that underlying mosquito population dynamics were comparable across all study sites as evidenced by the high congruence in daily collection patterns among traps (Pearson r = 0.64). Despite limitations related to trap costs and replication, the results demonstrate that smart traps offer new precision tools for the assessment of barrier treatments and other mosquito control interventions.


Assuntos
Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Aedes/efeitos dos fármacos , Animais , Austrália , Meio Ambiente , Humanos , Dinâmica Populacional , Queensland
15.
J Med Entomol ; 59(1): 89-98, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34761264

RESUMO

Plant-based repellents represent a safe, economic, and viable alternative to managing invasive insects that threaten native fauna. Observations of self-medication in animals can provide important cues to the medicinal properties of plants. A recent study in the Galapagos Islands found that Darwin's finches apply the leaves of Psidium galapageium (Hooker 1847) to their feathers, extracts of which were repellent to mosquitoes and the parasitic fly Philornis downsi (Dodge & Aitkens 1968; Diptera: Muscidae). Introduced mosquitoes are suspected vectors of avian pathogens in the Galapagos Islands, whereas the larvae of P. downsi are blood-feeders, causing significant declines of the endemic avifauna. In this study, we investigated the volatile compounds found in P. galapageium, testing each against a model organism, the mosquito Anopheles arabiensis (Patton 1905; Diptera: Culicidae), with the aim of singling out the most effective compound for repelling dipterans. Examinations of an ethanolic extract of P. galapageium, its essential oil and each of their respective fractions, revealed a mixture of monoterpenes and sesquiterpenes, the latter consisting mainly of guaiol, trans-nerolidol, and ß-eudesmol. Of these, trans-nerolidol was identified as the most effective repellent to mosquitoes. This was subsequently tested at four different concentrations against P. downsi, but we did not find a repellence response. A tendency to avoid the compound was observed, albeit significance was not achieved in any case. The lack of repellence suggests that flies may respond to a combination of the volatile compounds found in P. galapageium, rather than to a single compound.


Assuntos
Dípteros/efeitos dos fármacos , Controle de Insetos , Repelentes de Insetos/farmacologia , Extratos Vegetais/farmacologia , Psidium/química , Aedes/efeitos dos fármacos , Animais , Equador , Interações Hospedeiro-Parasita , Espécies Introduzidas , Extratos Vegetais/química
16.
J Med Entomol ; 59(1): 301-307, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34459477

RESUMO

The efficacy of three groups of insect growth regulators, namely juvenile hormone mimics (methoprene and pyriproxyfen), chitin synthesis inhibitors (diflubenzuron and novaluron), and molting disruptor (cyromazine) was evaluated for the first time, against Aedes albopictus Skuse (Diptera: Culicidae) larvae from 14 districts in Sabah, Malaysia. The results showed that all field populations of Ae. albopictus were susceptible towards methoprene, pyriproxyfen, diflubenzuron, novaluron, and cyromazine, with resistance ratio values ranging from 0.50-0.90, 0.60-1.00, 0.67-1.17, 0.71-1.29, and 0.74-1.07, respectively. Overall, the efficacy assessment of insect growth regulators in this study showed promising outcomes and they could be further explored as an alternative to conventional insecticides.


Assuntos
Aedes , Hormônios Juvenis/farmacologia , Controle de Mosquitos/métodos , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Diflubenzuron/farmacologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malásia , Metoprene/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia
17.
J Med Entomol ; 59(1): 291-300, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516625

RESUMO

Essential oil of Cananga odorata Hook. F. & Tomson is a source of insect repellent, but contact irritancy and noncontact repellency actions that stimulate insect's avoidance behavior (escape away from chemical source after direct physical contact or without making physical contact, respectively) have not been investigated. Therefore, an excito-repellency test chamber was used for measuring avoidance behavior of four insectary-reared mosquito species (Diptera: Culicidae) that escape from esposure to four concentrations (0.5, 1.0, 2.5, and 5.0% v/v) of C. odorata oil. The oil strongly repelled both Culex quinquefasciatus Say (85-97% escape) and Anopheles minimus Theobald (97-99%) at high concentrations (2.5-5.0%). For Anopheles dirus Peyton & Harrison and Aedes aegypti (L.), highest repellency (64 and 39% escape, respectively) was demonstrated at 2.5% concentration. For contact irritancy, the oil produced relatively high percent escape found in Cx. quinquefasciatus (90-100% escape) and An. minimus (83-100%). Whereas moderate contact irritancy was observed against An. dirus (40-50% escape) and Ae. aegypti (51-59%). The percent escape was then adjusted with repellency to estimate the effect of contact irritancy alone. We found that highest contact irritancy was presented at 0.5% concentration against An. minimus (67% escape). Knockdown and toxic actions were only found in Anopheles mosquitoes at 5.0% concentration. The results revealed that An. minimus and Cx. quinquefasciatus were more prone to be repelled by C. odorata oil. Detailed analysis of oil identified primary compounds as methyl benzoate (14.6%), α-gurjunene (12.8%), p-methyl-anisole (11.3%), and benzyl acetate (9.9%). Further investigations are needed to assess excito-repellency actions of these compounds alone or in combination.


Assuntos
Aprendizagem da Esquiva , Cananga/química , Culicidae , Óleos Voláteis/farmacologia , Aedes/efeitos dos fármacos , Aedes/fisiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Culex/efeitos dos fármacos , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos
18.
J Med Entomol ; 59(1): 372-375, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617566

RESUMO

Severe human arboviral diseases can be transmitted by the mosquito Aedes aegypti (Linnaeus), including dengue, chikungunya, Zika, and yellow fever. Adult control using spatial sprays with adulticides is recommended only when dengue outbreaks occur. In Argentina, mainly pyrethroids, like cis-permethrin, have been used as an adulticide, especially since 2008. The evolution and spread of resistance to insecticides is a major concern for vector control. This study reports for the first time pyrethroid resistance in Ae. aegypti adults from Argentina, in the city of Salvador Mazza (Salta). WHO discriminating doses of 0.75% were used for permethrin, 0.05% for deltamethrin, and 5% for malathion. Also the discriminating dose for cis-permethrin (0.6%) was calculated and evaluated for the first time. We found a resistance ratio 50 (RR50) of 10.3 (9.7-10.4) for cis-permethrin, which is considered as high resistance. Our results also indicated resistance to deltamethrin (22.6% mortality) and permethrin (53.6% mortality), and a total susceptibility to malathion (100% mortality). Results from this study highlight the importance of the correct use of insecticides within an Integrated Vector Management (IVM) approach and of early detection of resistance to enable Ae. aegypti control in Argentina. More studies are needed to determine the spread of mosquito resistance to pyrethroids.


Assuntos
Aedes/efeitos dos fármacos , Resistência a Inseticidas , Piretrinas/farmacologia , Animais , Infecções por Arbovirus/transmissão , Argentina/epidemiologia , Vetores de Doenças , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Infecção por Zika virus/transmissão
19.
J Med Entomol ; 59(1): 314-319, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536077

RESUMO

Mass-trapping has been used to control outbreaks of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Puerto Rico since 2011. We investigated the effect of multi-year, insecticide-free mass trapping had on the insecticide susceptibility profile of Ae. aegypti. Eggs collected in southern Puerto Rico were used to generate F1 populations that were tested for susceptibility to permethrin, sumethrin, bifenthrin, deltamethrin, and malathion according to CDC bottle bioassays protocols. All populations of Ae. aegypti were resistant to the synthetic pyrethroids and mosquitoes from two locations were partially resistant to malathion. Population genetic analysis, using a double digest restriction sites associated DNA sequencing (ddRADseq) approach, indicated a large amount of migration between study sites effectively homogenizing the mosquito populations. Mass-trapping using noninsecticidal autocidal gravid ovitraps did not restore susceptibility to five active ingredients that are found in commercial insecticides. Migration between communities was high and would have brought outside alleles, including resistant alleles to the treatment communities. Further investigation suggests that household use of commercially available insecticide products may continue to select for resistance in absence of public health space spraying of insecticides.


Assuntos
Aedes , Genética Populacional , Resistência a Inseticidas/genética , Aedes/efeitos dos fármacos , Aedes/genética , Distribuição Animal , Animais , Genes de Insetos , Inseticidas/farmacologia , Malation/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Permetrina/farmacologia , Porto Rico , Piretrinas/farmacologia
20.
PLoS Negl Trop Dis ; 15(12): e0010001, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905537

RESUMO

INTRODUCTION: In Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels. MATERIALS AND METHODS: In this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes. RESULTS: Mosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression. CONCLUSIONS: In this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , Colômbia , Proteínas de Insetos/genética , Mutação , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...